Sentinel Asia 10th Anniversary Event and the 4th JPT Meeting for Sentinel Asia STEP-3

(JPTM2017) Geospatial information and technology for better DRR-related decision making: advantages and challenges By: Anggraini Dewi Hanoi, 7-9 March 2017

Background

- 1986
 - Originally a training agency, established in partnership with United Nations
 Office for the Coordination of Humanitarian Affairs (UNOCHA), UNDP and
 World Meteorological Organization (WMO)
- 1990s
 - Kick-started project implementation and advisory services

Our Locations

ADPC currently works in 23 countries in the South and Southeast Asian region and the Pasific.

Offices:

- Bangkok, Thailand
- Dhaka, Bangladesh
- Yangon, Myanmar
- Jakarta(at BNPB), Indonesia


Partnerships

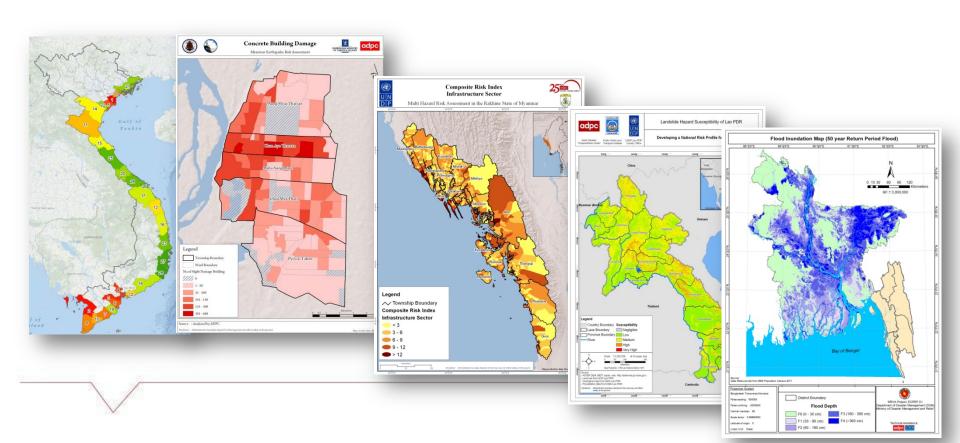
Who we work with

Partnerships

Cooperation and collaboration

Sentinel Asia Membership

- Member of JPT-3 in August 2014
- Member of Data Analyst Node in July 2016



Contributions to DRR community through GIT Applications and Capacity Building

Sendai Framework: Priority for Action 1: Understanding Risk

Risk Assessment

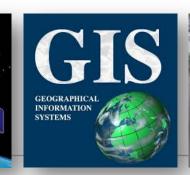
Determine what exists on the ground

 What can be damaged by the typhoon wind force?

Determine what exists on the ground

 Making a database of building locations (geospatial database)...

• ...and also the characteristics of each building such as construction materials, number of stories, use of the building, etc.


Masonry

Elements at Risk

Determine what exists on the ground

 Use a combination of satellite imageries, GIS techniques, and ground survey

Elements at Risk

Overlaying the typhoon wind field

Vulnerability Assessment

 Determine what wind exposed to

Calculate the damage

• The risk is represented by potential damage to houses from the typhoon.

Sub-district	# Buildings	Damage (\$)
SD_1	14,676	12,098,677
SD_2	7,453	7,998,940
SD_3	3,789	5,675,300
SD_4	12,660	13,654,901

Risk Assessment Damage Classification No damage Moderate High

NATIONAL AND PROVINCIAL RISK ASSESSMENT, CAMBODIA 2014

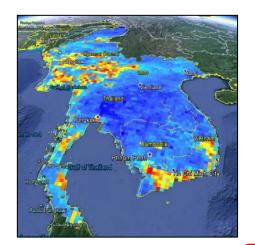
National Committee for Disaster Management

MULTI HAZARD RISK ASSESSMENT IN THE RAKHINE STATE OF MYANMAR

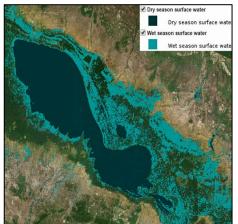


Figure 15: Training before actual survey

Figure 16: Actual field survey



- Promoting open data sharing
- Based on demand-driven



Geospatial Tools/Data for Disaster Risk Management from SERVIR-Mekong (https://servir.adpc.net/)

Regional Drought Monitoring

- Monitor and forecast drought
- Estimate impacts on crop yields

Surface Water Mapping

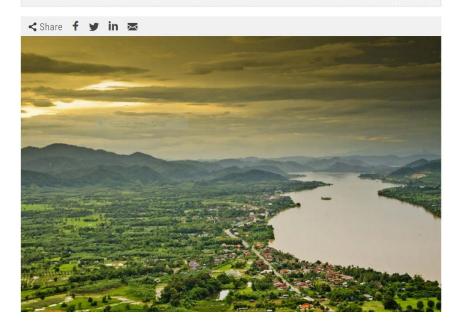
- Analyze trends of wet/dry areas
- Analyze river course changes

Future Tools

- Real-time flood monitoring
- Severe thunderstorm warning

Virtual Rain and River Gauge

- Provide rain and stream height data
- Improve flood warning



Description of Surface Water Mapping Tool:

The Surface Water Mapping tool leverages the extensive archive of Landsat data in the Google Earth Engine archive and Google's cloud processing power to quickly calculate past patterns of surface water extent from multiple layers of Landsat imagery. The tool consists of a Google Earth Engine application and a user friendly web interface which allows the user to specify the period evaluated and other calculation parameters that are then executed in a cloud service. Results are displayed on screen and can be downloaded for specified areas.

Launch Surface Water Mapping Tool

LAUNCH TOOL

Description of Surface Water Mapping Tool:

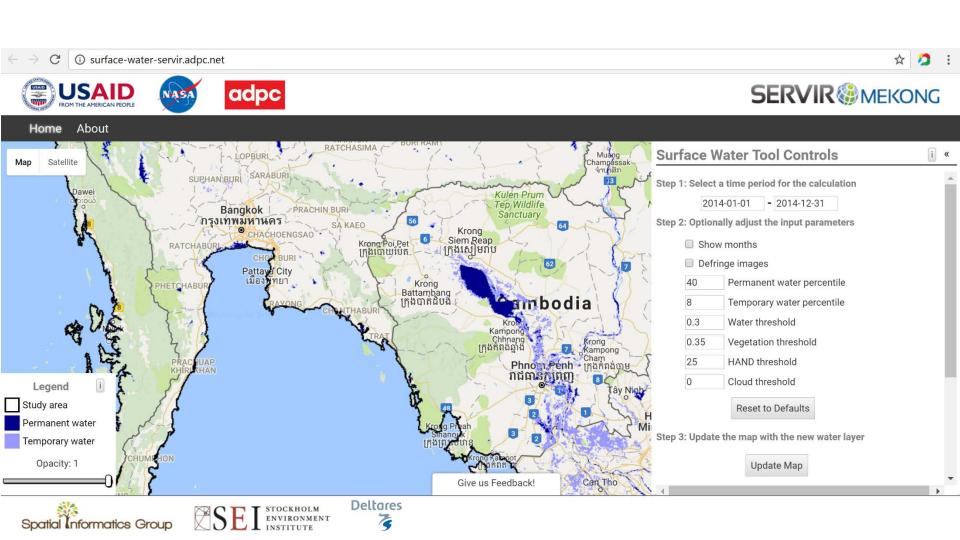
Home About

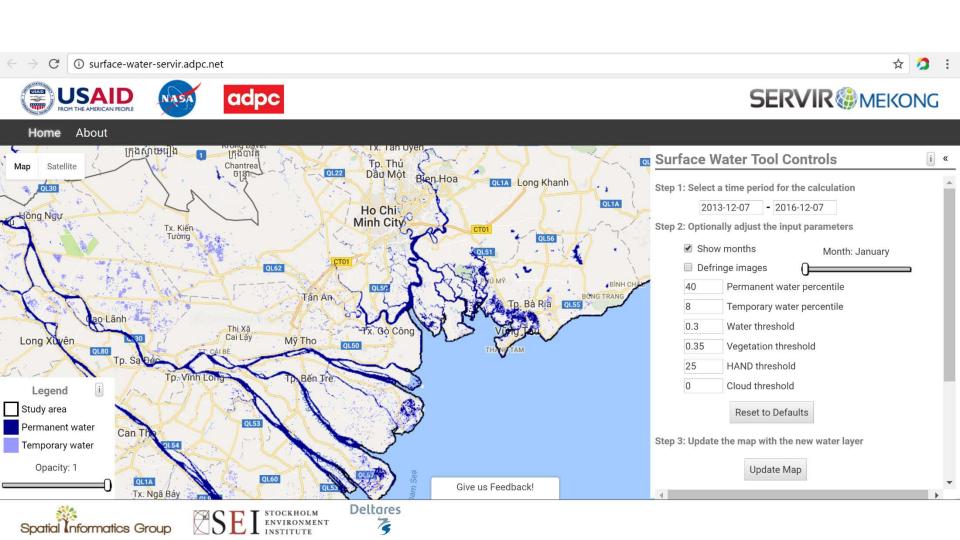
About the Surface Water Mapping Tool

In simple terms, the tool works by first merging data from different landsat satellite missions to one big stack of images for the selected period. From this stack of images two percentiles are calculated for each pixel, one rather low percentile (default 8%) and one higher percentile (40%). Here, a percentile is a measure indicating the value below which a given percentage of pixels in a group of pixels falls. For these two percentile maps the Normalized Difference Water Index (NDWI) is calculated. This index combines several spectral bands that are sensitive the the occurrence of water. For each percentile map a threshold value is applied classifying pixels as water or non-water. The resulting maps give an indication of the number of times a given pixel was classified as water vs. non water over the selected period (but not an exact value). So for the 8% map the pixels are covered with water much less than the 40% maps and these are indicated as temporary and permanent water respectively. Due to the statistical nature of this method the maps are asynchronous in time, i.e. not each pixel is covered with water at the same time but these maps are an integration over the selected period. In further steps, the water detection is refined by checking for areas that are unlikely to have surface water and filter out dark vegetation wrongly detected as water.

Development and Acknowledgment

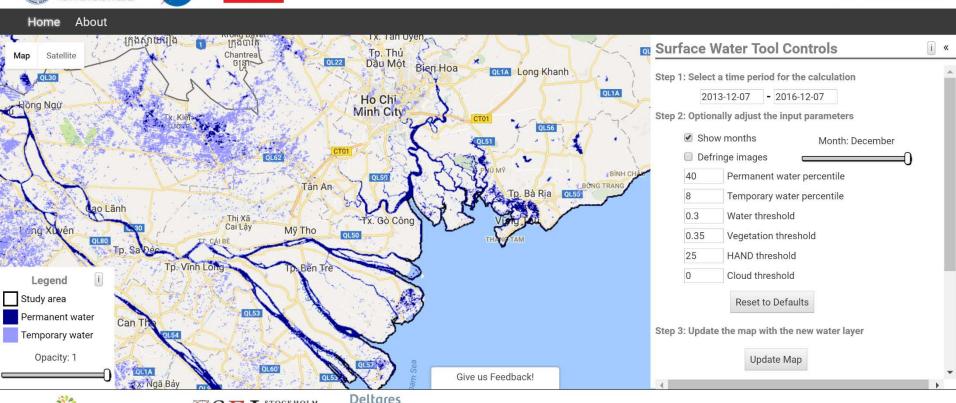
The development of the algorithm that transforms Landsat7/8 was initiated in the PhD research of Gennadii Donchyts (co-funded by Deltares and Technical University Delft). Testing and further development of the algorithm using the Murray-Darling basin in Australia was funded by the EC FP7 project eartH2Observe (under grant agreement No 603608 which led to the publication of Donchyts et.al. 2016 (see below)).


Application to the Mekong-Basin, which includes testing, applying and adjusting dynamic thresholds and further optimisation of the



Surface Water Mapping Tool (http://surface-watercervir adno net / surface-water-servir.adpc.net **SERVIR** MEKONG adpc Home About Attapeu Wistnam ອັດຕະປື **Surface Water Mapping Tool** Qui Maon This tool calculates past patterns of surface water extent from multiple layers of Landsat imagery. The tool consists of a Google Earth Engine application and a user friendly web PHETCHA interface, which allows the user to specify the period evaluated and other calculation parameters that are then executed in a cloud service. Results are displayed on screen and can be downloaded for specified areas. Nha Tang The Surface Water Tool is a collaborative effort between its developers and its community of Dalat users. We welcome suggestions for improvements on our Github issues page. Cam Banh Legend Get Started! Study area Permanent water Temporary water Opacity: 1 Can Tho Give us Feedback! Map data ©2017 Google Terms of Use **Deltares** Spatial Informatics Group

Spatial Informatics Group



STOCKHOLM ENVIRONMENT

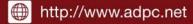
1

"The Sendai Framework for DRR recognizes that States have the primary responsibility to prevent and reduce disaster risk, including cooperation"

Challenges:

How to meet the **needs** of end-users; measure the **impacts** of our

interventions; and ensure that our interventions are **Sustainable**?


Suggestion to enhance DAN's:

- Collaboration is a key to enhance the DAN's continuous supports to the end-users, therefore, communication and coordination among DAN members are needed.
- Engagement of end-users (i.e. DMOs) in Sentinel Asia meetings/activities is one of important keys to better understand their needs in DRR-related decision making. Therefore, more encouragement is suggested to enhance/improve DMOs' active participation.

THANK YOU FOR YOUR ATTENTION

http://www.drrprojects.net

Group: Asian Disaster Preparedness Center (@ADPCnet

