

Report of Wildfire WG activity Wildfire Monitoring System Development

2018-01-23 Wildfire WG, Koji Nakau (JAXA/SAOC)

Topics of Today

Wildfire monitoring system

- Feature

XA

- Multiple satellite dataset will be combined into one system.
 - Existing wildfire monitoring system utilize each satellites separately.
- Status
 - This system is under development. To be released on March.

Available satellite sensors for wildfire monitoring

- Japanese satellites sensors Other sensors
 - Himawari-8/AHI
 - CIRC (ALOS-2 and ISS/JEM)
 - GCOM-C

- - GOES-R/ABI
 - MODIS
 - VIIRS

Volcano and Wildfire Monitoring System

Japanese Infrared Sensors available for wildfire

	MODIS(NASA)	CIRC	GCOM-C	Himawari 8
Agency(launch)	NASA(1998~)	JAXA(2014~)	JAXA(2017~)	JMA(2016~)
空間分解能	1km	210m, 130m	250m	2km
観測波長	36bands	1 band(8-12µm)	19 bands	16 bands
更新頻度	4times a day	2times/14days	40times/34days	Every 10minutes

We can detect wildfire as red rectangle pixels, however, we do not know exact place.

Resolution

Sensitivity is same as MODIS, However, pixel size is small (210m), we can find exact place of wildfire.

Frequent

Small pixel (250m) and 2.2µm SW allow us to find exact place of wildfire.

2

Volcano and Wildfire Monitoring System

- ✓ A system to monitor wildfire and volcano activity.
- ✓ One stop service combining Himawari, GCOM−C and CIRC
 - Currently, discussion with JMA, JCG, FDMA held, we need further discussion with Asian agencies for improvement.

Volcano and Wildfire Monitoring System

Volcano and Wildfire Monitoring System

地球観測用小型赤外カメラ(CIRC)の概要

XA

CIRC Fire Detection

Improvement of Algorithm

- Improvement of Algorithm limitation of at launch algorithm Limited number of fire pixels False alarms by ununiform sensitivity Improvement using on orbit data Atomospheric correction More pixels to estimate average BG temperature Reduction of false alarm

Reduction of false alarm

- Cloud mask, BG fire pixel by 30 yr avg temp.
- Land/Water mask by map
- Utilization of daily temprature change

Much Improved sensitivity.

- Additional property in fire product
- Area of active flame

Himawari

Example of Himawari HS Prescribed burning on 2017–03–18

At Watarase lake, prescribed burning of grassland held on March 18. This fire has been detected frequently by JAXA Himawari monitor.

Example of Himawari HS Prescribed burning on 2017-03-18

At Watarase lake, prescribed burning of grassland held on March 18. This fire has been detected frequently by JAXA Himawari monitor.

GCOM-C

MAA GCOM-C Satellite

Global Change Observation Mission – Climate (GCOM–C)

- Targets of GCOM-C is observations of many physical properties; Cloud, Aerosols, Ocean colors, Sea and Land surface temperature, Vegetation, Biomass, Snow and Ice, Radiation Budget of the Earth, and Carbon Cycles.
- Our goal is to contribute for more accurate estimation of variety of climate change or temperature rise of the future Earth, including social impacts on fishery (red tide, et. al.), agriculture (crop estimation).

Feature of GCOM-C / SGLI

•<u>Higher resolution (250m)</u> comparing to other resemble sensors with <u>once a two-three days observations</u>. <u>Expected Impacts</u>

• Higher resolution (250m) comparing to other resemble sensors with once a two-three days observations.

Specification of GCOM-C satellite

Sensor	SGLI: Second-generation GLobal Imager
Channels	19channels (UV to infrared)
Orbit	Sun synchronous orbit (800km)
Swath Resolution	1,150km (Visible), 1,400km (IR) 250m to 1km
Local sun time	$10:30\pm15$ minutes
Launch	2017-12-23
Life time	5 years

MAA GCOM-C (Example of features)

◆250m resolution surface temperature

GCOM-C observes thermal infrared with 250m resolution. It is 4 times finer resolution than MODIS. This means area of each pixel becomes 1/16. Therefore small structures of temperature are visible; including temperature distribution in urban area or temperature difference between sea river water.

Simulated thermal infrared image of SGLI in Tokyo Bay MODIS (1km resolution) GCOM-C (250m resolution)

GCOM-C (250m resolution)

GCOM-C Image (First light in Tokyo and Sumatra)

http://suzaku.eorc.jaxa.jp/GCOM_C/monitor/gallery/20180112_j.html Courtesy to EORC 21

Future Activity

- After release of Volcano and wildfire monitoring system
 - Discussion with Asian as well as domestic users for improvement
 - Additional layers
 - Additional functions or screen
 - Ingestion of GCOM-C dataset
 - Development of algorithms
 - Activity change detection
 - Fire history dataset
 - Validation of wildfire or volcano product

Thank you