Nov. 1<sup>st</sup>, 2018

# **Volcano Monitoring**

Location : Sakurajima Date : Jan. 2, 2013 Camera : Canon EOS 60D F number : 5.6 Shutter speed : 30 seconds ISO : 800 Photographer : JMA expert

#### **Today's topics**

# HOW CAN WE USE ALOS-2 DATA FOR MONITORING VOLCANOES?



MMMMMMM



#### **Active Volcanoes in Japan**



circle: active volcanoes, red-triangle: erupted this year



- <u>**111**</u> active volcanoes

   (Active volcanoes: it erupted within 10,000 years)
- <u>5</u> volcanoes erupted this year

(Kusatsu-Shiranesan, Kirishimayama (Shinmoedake, Iwo-yama crater), Nishinoshima, Sakurajima, Suwanosejima)

• <u>50</u> volcanoes are continuously monitored.



#### Volcanic Observation and Warning Center



Japan Meteorological Agency

### Advantages of ALOS-2(PALSAR-2) data

|                      | GNSS                                  | ALOS-2 data                            |
|----------------------|---------------------------------------|----------------------------------------|
| Observed<br>data     | Coordinate of point                   | Land-covering<br>deformation           |
| Equipment<br>on land | Need to built<br>observation stations | NOT need to built observation stations |

 In spite of isolated islands or activated volcanoes where we can't access, volcanic activities are monitored.



#### **Kusatsu-Shiranesan volcano**

#### Erupted on Jan. 23th, 2018

- Kusatsu-Shiranesan is an active volcanone which has 3 pyroclastic cones.
- Yugama is the most active crater of Kusatsu-Shiranesan.
- Most observation was targeted Yugama.
- However, eruption occurred at about 2km south of it.





Location of monitoring instrument/observation stations around Kusatsu-Shiranesan. Red-square indicates SAR image area.

many

SAR intensity images of ALOS-2 (PALSAR-2)

GSI report of 140<sup>th</sup> Coordinating Committee for Prediction of Volcanic Eruptions (CCPVE)

Japan Meteorological Agency

#### Why the crater location is important



hazard map of Kusatsu-Shiranesan volcano



## Kirishimayama volcano(Shinmoedake crater)

#### Erupted on Mar., 2018

- Kirishimayama is a large volcanic complex of more than 20 Quaternary volcanoes.
- Shinmoedake and Iwo-yama are the one of the most active craters of Kirishimayama.
- Shinmoedake and Iwo-yama erupted this year, and Shinmoedake erupted in 2011, too.
- There are many observation stations around Kirishimayama.



#### Location of observation stations





Japan Meteorological Agency

#### Kirishimayama volcano (Shinmoedake crater)



My my month mark



#### Kirishimayama volcano (Shinmoedake crater)



NIED report of 141<sup>th</sup> CCPVE



#### Kirishimayama volcano (Iwo-yama crater)

#### Erupted on Apr. 19th and 26th, 2018





### Nishinoshima volcano



- Nishinoshima is located about 1,000km south of Tokyo.
- Nobody lives in the island.
- In 2013, a small island was created near the former island.
- The new island joined up with original island due to its volcanic activity.
- After the eruption in 2013, the volcano erupts intermittently.





### Nishinoshima volcano

- In Nishinoshima volcano, monitoring methods are limited (eg. airplane or ship observation).
- InSAR analysis shows volcanic activities such as lava flow.



## FEATURES of ALOS-2(PALSAR-2) data

|                       | GNSS                                                                                      | ALOS-2 data                                                                       |
|-----------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Observed<br>data      | Coordinate of point                                                                       | Land-covering<br>deformation                                                      |
| Equipment<br>on land  | Need to built<br>observation stations                                                     | NOT need to built observation stations                                            |
| Temporal<br>frequency | <ul> <li>Continuous observation</li> <li>Independent of<br/>other observations</li> </ul> | <ul> <li>Every 2 weeks (earliest)</li> <li>Conflict other observations</li> </ul> |

Mr. M. Mary Mary Mark

 $\checkmark$  It is difficult to monitor volcanic activities constantly.



#### **Expectation for remote sensing data**



- Some volcanic observation was cancelled due to other disasters (and vice versa).
- Cancelled observation was recovered by cooperation of JAXA.
- If observation range was wider, it would be NOT cancelled...



## **Summary**

- ALOS-2(PALSAR-2) data is quite effective for monitoring of volcanic activity (crustal deformation, changes of volcanic surface).
- Remote sensing data is becoming more and more important for volcanic monitoring.
- Observation opportunities sometimes conflict with other hazard monitoring(earthquake, flood and etc.).
- We hope that wide range, high temporal frequency and high spatial resolution observation will be available in future.

## Thank you for your attention!

Japan Meteorological Agency Seismology and Volcanology Department Volcanology Division, Isao Kageyama

