P-DAN Report

Ryosuke Shibasaki, <u>Hiroyuki Miyazaki</u> Center for Spatial Information Science University of Tokyo

Nightmare of growing data...

Solutions

- Automations of data processing
 - Automated detection of ground features in satellite imagery
- Precise data resources
 - Small-scale satellite data
 - key limitations and breakthroughs

Automated mapping system

Functions by the component

- Component 1—Automated detection using deep learning
 - Implementation of deep learning algorithm to detect ground objects (e.g. buildings) on high performance computing systems.
- Component 2—Input data management systems
 - User interface for creation and management of visual interpretation data.
 - Consistent management between visual interpretation data and satellite images for preparation of training data set.
 - Prioritize regions for data improvements according to quality assessment results.
 - Manage variety of massive satellite data in consistent coordinate systems.
- Component 3—Quality control systems
 - Assess quality of data products by region for prioritizing data improvements.

Component 1—Automated detection using deep learning **Pilot application to nation-wide building mapping from Google Maps' satellite images for Sri Lanka**

Central areas in Colombo

Suburban around Kandy

Nation-wide mapping

Component 2— Input data management systems

Automated task/reward management of visual interpretation of ground objects over the Internet.

User Server Data Request based map layer (via WMS) Query based map with grid 🦉 QGIS 🜈 **Response based map** Geotiff GeoServer **Request feature** layer (via WFS) Query feature layer **Response feature layer** Return feature Add/edit feature insert/update polygon feature polygon (via WFS-T) Response polygon feature Return polygon feature **PostGIS**

Component 2— Input data management systems

Training data preparation using QGIS, the freely available GIS software \rightarrow Anyone can contribute to the training data. Experimental operation with Japan, Thailand, Nepal, and Vietnam.

Remained works

- System improvements
 - Improve the detection/mapping algorithms
 - E.g. color balancing between images.
 - Full-automation of task/reward management for training data
- R&D of quality control systems

Expected befits to Sentinel Asia

- Application of the systems to automated damage mapping, such as collapsed buildings and land slides, for rapid damage assessments.
- Nation-wide mapping of demography and infrastructure for better preparedness and planning.

Solutions

- Automations of data processing
 - Automated detection of ground features in satellite imagery
- Precise data resources
 - Small-scale satellite data
 - key limitations and breakthroughs

Earth observation from small-scale satellites

Potentials to high-frequency global snapshots

Hodoyoshi-1 by AxelSpace, JPN

Sensor	Spectral bands	Res.	FOV/swath widts
Optical sensor	Blue (450-520nm)	6.7 m	27.8km x 179km
	Green (520-600nm)		
	Red (630-690nm)		
	NIR (780-890nm)		

Eruption of Mt. Agung, IDN, Nov 2017

Jakarta, IDN, Aug 2017

Taipei, TWN, March 2018

Diwata-1 by DOST, PHL & Tohoku Univ., JPN

Sensor	Spectral bands	Res.	FOV/Swath width
HPT (High Precision	RGB+NIR	3 m	1.9 km x 1.4 km
Telescope)			
SMI (Spaceborne	Visible and NIR	80 m	30 km x 40 km
Multispectral Imager)	420–700 nm		
	650–1050 nm		
WFC (Wide Field	Panchromatic	7 km	180º x 134º
Camera)			
MFC (Mid-Field Camera)	Color	185 m	121 km x 91 km

Observation data of SMI available at https://data.phl-microsat.xyz/

Floods in Cagayan de Oro, MindanaoEruption of Mayon VolcanoJan-Feb 2017Jan 2018

Key limitations

Hodoyoshi-1 **Positional accuracy** + shifts of the NIR sensor

9. Type to locate (Ctr1+K) 1 legend entries removed.

Lidenis: 400936.71290426.5 : 499512.5.1290541.6 🔲 Scale 1:21011 🚽 🚔 Magnifier 100% 🏅 Robation (0.0 * 🖤 🖾 Render 🐡 LPSG:22648 🗬

Key limitations

Hodoyoshi-1

Positional accuracy + shifts of the NIR sensor

1 legend entries removed.

Extents: 489131.5,1276047.1 : 496239.4,1281115.4 👩 Scale 1:17414 🧹 🔒 Magnifier 100% 🕏 Relation 0.0 ° 🛡 📿 Render 💮 EPSG:32648 🚭

Key limitations

Diwata-1

Positional accuracy

Extents: 123.50,13.19 : 123.73,13.36 🚺 Scale 1:55,122 🗸 🔒 Magnifier 100% 🕏 Rotation |0.0 🗘 🖉 Render 💿 EFSG:4326 (OTF) 🗠

Solution – automated co-registration

Eastures

Meta

Preliminary trial

Hodoyoshi-1 with correction #/등성지·성友급성진입 목종등학원등등 문 🕏 1. 能 1. 能 1 1 6 6 6 4 Brows... # x V. GCT. a Na Na Pa Home Tavo C:/ DB2 MSSQL Orade PostGIS / Spatial ArcGisF () ows 🐨 Tile Ser G wcs > V WFS > 🐨 WMS < > Layers... # × * A * " 1219 1597 ✓ ✓ **1593** ■ 0 120

Coordinate 104.89180,11.67925 🛞 Scale 1:31,884 🗸 🔒 Magnifier 100% 🕏 Rotation 0.0 🕏 🗸 Render 👁 EPSG:4326 (OTF)

Preliminary trial

G. Type to locate (Ctrl+K) 1 legend entries removed.

Extents: 479170.9,1284741.6 : 483574.1,1287881.4 📋 Scale 1:10788 🗸 🔒 Magnifier 100% 💲 Rotation 0.0 ° 🕏 🗸 Render 💮 EPSG:32648 📿

Expected benefits to Sentinel Asia

- More options with better preciseness
 - Potentially more available combinations of pre- and post-disaster observations even with different satellites and sensors.
- Remained works
 - Examine applications to hazard/damage mapping with the co-registered images.
 - Develop instructions/manuals.

Concluding remarks

- Automations of data processing
 - Nation-scale building mapping is ongoing for some countries.
 - Potential extension to automated damage mapping for rapid responses (collapsed buildings, land slides, etc.)

Strengthening mapping capacity by the automation and newly growing data resources

- Precise data resources
 - Possible applications of small-scale satellite data to disaster mapping.
 - A success in automated co-registration of image data from the small-scale satellites

→ Integrations with existing satellite data for better change/damage detection between pre- and post-disasters.

Acknowledgement

- The Hodoyoshi-1 data is granted by AxelSpace Corporation, Japan, under an agreement on collaborative research on the data applications to disaster risk management.
- The large-scale building mapping was processed on a HPC provided by Sakura Internet Inc., Japan.