Automatic Analysis method

September 18th, 2023
8th Joint Project Team Meeting
Jakarta, Indonesia

Japan Aerospace Exploration Agency (JAXA)
Yuki TAKAKURA
SAR image-derived information

<table>
<thead>
<tr>
<th>Information we can provide to users</th>
<th>Process</th>
<th>Time (from observation to end of processing)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGB composite image (★)</td>
<td>Auto</td>
<td>2 hour</td>
</tr>
<tr>
<td><Flooding> Location of the flood extent (★)</td>
<td>Auto</td>
<td>2.5 hour (Japan) 0.5 hour (Other)</td>
</tr>
<tr>
<td><Flooding></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Location of the flood extent (★)</td>
<td></td>
<td>(SM3 mode only)</td>
</tr>
<tr>
<td>- Area of flood by each municipality (Japan only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Number of flooded buildings by each municipality (Japan only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><Earthquakes> (Japan only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Location of damaged-buildings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Number of damaged-buildings by each municipality</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(★) Information currently provided by JAXA to Sentinel Asia
Information we can provide to users

<table>
<thead>
<tr>
<th>Process</th>
<th>Time (from observation to end of processing)</th>
</tr>
</thead>
<tbody>
<tr>
<td><Flooding>
- Location of the flood extent (Under verification)</td>
<td>Auto</td>
</tr>
<tr>
<td><Landslide>
- Location of the landslide extent (Under verification)</td>
<td></td>
</tr>
</tbody>
</table>

Optical image-derived information
SAR imagery
JAXA has developed a system to automatically detect the flood extent using JAXA’s ALOS-2 data for Sentinel Asia.

- **Benefit:**
 When an EOR is activated and observations are made by ALOS-2, JAXA can now quickly provide extracted flood-area information as well as ALOS-2 observation imagery.

- **Analysis Method:**
 This analysis uses a simple and primitive SAR analysis method and is fully automated. (Therefore, the accuracy may be lower than that of other DANs that use more sophisticated analysis methods.)

Notice
- The information is automatically estimated from satellite data and could differ from the actual flood extent.
- It shows estimated flood extent at the time of satellite observation and does not indicate the maximum extent.
A simple and primitive method of extracting the flood extent by automatically determining the threshold of water from the backscatter intensity of the ALOS-2 (SAR) image.
Storm, Flood and Landslide in Vietnam on 28 September, 2022

JAXA’s VAP is almost same as AIT’s and EOS’s

ALOS-2, ScanSAR mode
Cyclone MOCHA in Myanmar on 14 May, 2023

https://storymaps.arcgis.com/collections/6c2cdd4f4b92434cbb6d343eaa0006db?item=1
Automatic Analysis for Flood by SAR

Flood, Landslide and Storm in India on 13 July, 2023

https://storymaps.arcgis.com/collections/9ee0925945ec4659b107b814c2f99b5e?item=1

JAXA

AIT

ALOS-2, ScanSAR mode
JAXA is developing another automated system with higher accuracy.

This system requires ALOS-2 L1.1 data, which is closer to raw data than ALOS-2 L2.1 data used in the algorithm introduces earlier, for analysis. This method is expected to be more accurate especially for urban area.

This method is currently being validated and may be replaced by this method in the future.

Notice
• The information is automatically estimated from satellite data and may differ from the actual flood extent.
• It shows estimated flood extent at the time of satellite observation and does not indicate the maximum extent.
Use L1.1 data and perform interference analysis to improve accuracy especially in urban areas. Based on Ohki et al. (2020).
Typhoon Mawar in Philippines on 27 May, 2023

JAXA (New method, L1.1) JAXA (Conventional method, L2.1)

ALOS-2, SM3 mode
Flood in Andhra Pradesh, India on 12 July, 2022

https://sentinel-asia.org/EO/2022/article20220712IN.html

JAXA (New method, L1.1) JAXA (Conventional method, L2.1)
Optical imagery
A **simple and primitive method** of extracting the flood extent by automatically determining the threshold of water from the NDVI or NIR of the optical image.

Optical image (before-disaster)

- **LULC**
 - Extract water body

- **Determine the threshold of water body by NDVI/NIR**

- **Classify water body**

Optical image (after-disaster)

- **Determine the threshold of water body by NDVI/NIR**

- **Classify water body**

DEM

- Exclude areas with large slopes

Extract flood extent

smoothing

Output

NDVI: Normalized Difference Vegetation Index

NIR: Near infrared
Automatic Analysis for Flood by Optical image

Satellite: SPOT
Before: 2019/10/9
After: 2019/10/13

©Airbus DS

Blue: Estimated flood extent
Yellow: Grand truth by Geospatial Information Authority of Japan (GSI) (as of 10/14)

NDVI: Normalized Difference Vegetation Index
NIR: Near infrared

Precision 38.7%

Precision 80.7%
JAXA is developing automatic analysis systems to extract affected areas using SAR and optical imagery.

SAR imagery:
JAXA have already provided VAPs of the automatically estimated flood extent to Sentinel Asia.
We are also working to improve its accuracy.

Optical imagery:
Primitive and automatic methods have already been implemented. Automatic analysis using deep learning is also under study.

Issue:
Lack of ground-truth data makes it difficult to assess the accuracy of VAPs. As a DAN, I would appreciate it if anyone who has grand truth data such as flood extent, location of landslides, location of building damage, etc., could share it with Sentinel Asia, because it will help improve the accuracy of DAN's VAP.