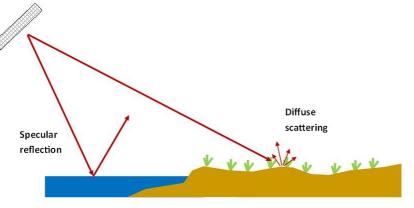
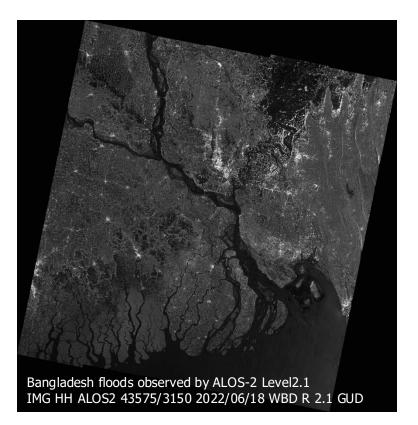


SAR Data Analysis for Flood Detection and Mapping

Syams Nashrrullah Research Specialist

Geoinformatics Center - AIT

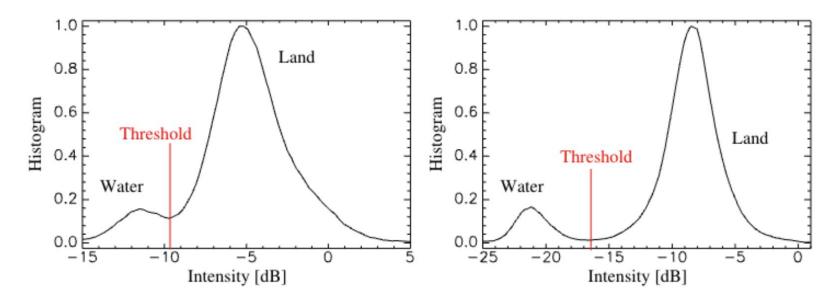



Overview

How does Synthetic Aperture Radar (SAR) detect floods?

- Water (calm) surface appears dark due to specular reflection leading to low backscatter.
- Non-water (Land) surface appear brighter due to the rough surface leading to higher backscatter.

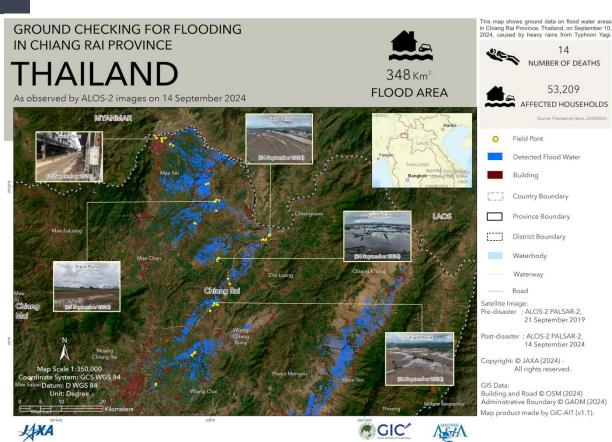
Franz J Meyer, 2023



Overview

How does Synthetic Aperture Radar (SAR) detect floods?

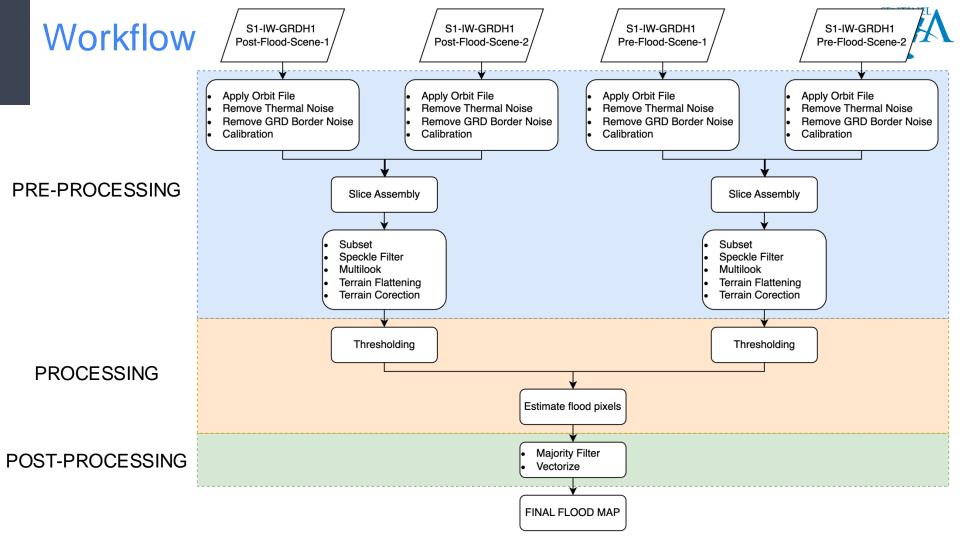
• The common method for flood detection and mapping is thresholding.



Histogram of two Radarsat SAR images of the same region acquired under different incidence angles. Left: Radarsat S2 (23° incidence angle). Right: Radarsat S7 (45° incidence angle) (Solbø & Solheim, 2004)

Sentinel Asia activation in Thailand

Overview



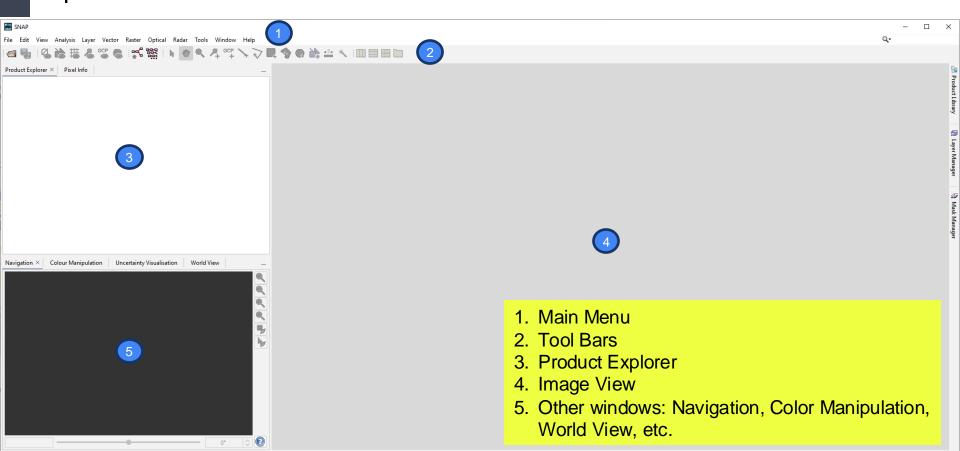
Floods in Northern Thailand

Northern Thailand, particularly Chiang Rai Province, is experiencing significant flooding due to continuous heavy rainfall intensified by Typhoon Yagi.

- Occurrence Date (UTC): 10 Sep. 2024
- SA activation Date(UTC): 12 Sep. 2024
- Requester: Geo-Informatics and Space Technology Development Agency (GISTDA)

Note: The International Disaster Charter (IDC) was also activated for this event via another mechanism.

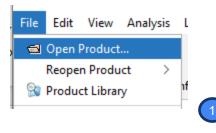
Overview Data and Software


In this exercise, you will work with SNAP software to perform pre-processing from a pair of Sentinel-1 data. QGIS will be used to identify flood pixels, clean the output, and visualize the map.

Data:

- Sentinel-1 GRDH on 15 Sept. 2024 (Post-flood):
- S1A_IW_GRDH_1SDV_20240915T231601_20240915T231626_055682_06CCBA_08DA.SAFE S1A_IW_GRDH_1SDV_20240915T231626_20240915T231651_055682_06CCBA_F73A.SAFE
- Sentinel-1 GRDH on 21 Sept. 2023 (Pre-flood): S1A_IW_GRDH_1SDV_20230921T231605_20230921T231630_050432_0612B3_4935.SAFE S1A_IW_GRDH_1SDV_20230921T231630_20230921T231655_050432_0612B3_053E.SAFE

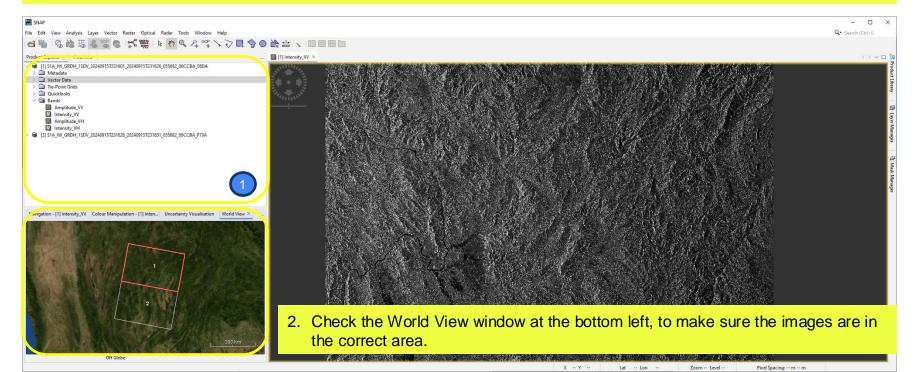
Data Pre-processing Open SNAP software



Data Pre-processing Open Sentinel-1 Data (post-flood image)

First, let's open **Sentinel-1 images during the floods**. The area of interest is covered by two scenes, so we will open both images here.

1. In the Main Menu, go to File \rightarrow Open Product...


SNAP - Ope	en Product	×
Look In:	S1_PostFlood_20240915	N A R III
	RDH_1SDV_20240915T231601_20240915T231626_055682_06CCBA_08DA.SAFE.zip RDH_1SDV_20240915T231626_20240915T231651_055682_06CCBA_F73A.SAFE.zip	Advanced
File Name:	5_055682_06CCBA_08DA.SAFE.zip" "S1A_IW_GRDH_1SDV_20240915T231626_20240915T23	1651_055682_06CCBA_F73A.SAFE.zip"
Files of Type:	All Files	~
		3 Open Cancel

- 2. Browse to the location of the data. Then select both files of Sentinel-1 data. Each file refers to a different acquisition date.
- 3. Click Open

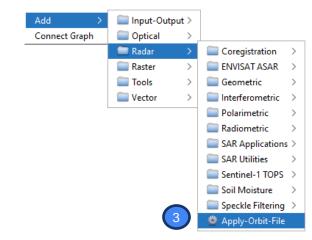
Data Pre-processing Explore the Sentinel-1 Data

 The opened products will appear in the Product Explorer window. Click > to expand the contents of the product [1], then expand the Bands folder and double-click on the Intensity_VV band to visualize it. You can also open other folders, to check the metadata and other info.

Data Pre-processing **Open Graph Builder**

We will use the **Batch Processing** tool available in SNAP to apply all steps to both images in one go (this also saves disk space as only the final product is physically saved).

Tools Window Help	🖼 Graph Builder X	2. The Graph Builder window
Metadata > Attach Pixel Geo-Coding Detach Pixel Geo-Coding	2	will show up. In the beginning, the graph has only two operators: Read (to
양 GraphBuilder 聽 Batch Processing	Read Right click here to add an operator	read the input) and Write (to write the output). We will create
Manage External Tools Plugins		a step-by-step workflow to apply identical pre-processing steps to
Options Remote execution	Read Write Source Product	both of our scenes.
 In the Main Menu, open Tools → GraphBuilder 	Name: [1] S1A_JW_GRDH_1SDV_20240915T231601_20240915T231626_055682_06CCBA_08DA Data Format: Any Format Advanced options	


Data Pre-processing Update the orbit metadata

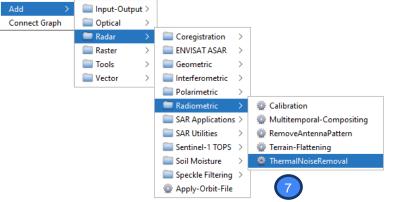
- The orbit state vectors provided in the metadata of a SAR product are generally not accurate and can be refined with the precise orbit files which are available days-to-weeks after the generation of the product.
- The orbit file provides accurate satellite position and velocity information. Based on this information, the orbit state vectors in the abstract metadata of the product are updated.

Data Pre-processing Update the orbit metadata

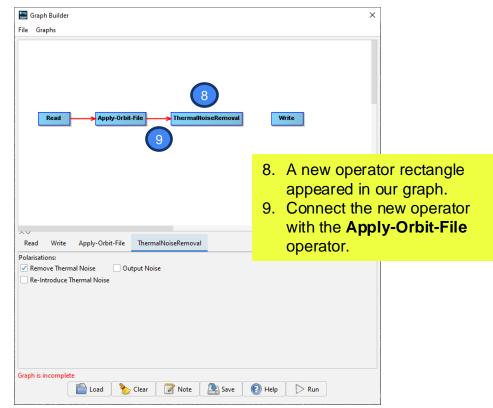
To add the operator right-click the white space between the existing operators and go to Add → Radar → Apply-Orbit-File

File Graphs		
Read	Apply-Orbit-File Write	
∧∽ Read Write	Apply-Orbit-File	
Read Write Orbit State Vectors	Sentinel Precise (Auto Download)	~
Read Write Orbit State Vectors Polynomial Degree	Sentinel Precise (Auto Download)	~
Read Write Orbit State Vectors Polynomial Degree	Sentinel Precise (Auto Download)	
Read Write Orbit State Vectors Polynomial Degree	Sentinel Precise (Auto Download) s s worbit file is not found	

- 4. A new operator rectangle appeared in our graph.
- 5. Now connect the new Apply-Orbit-File operator with the Read operator by clicking to the right side of the Read operator and dragging the red arrow towards the Apply-Orbit-File operator.
- 6. Notice that a new tab also appeared below the graph.

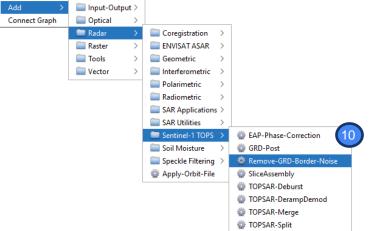


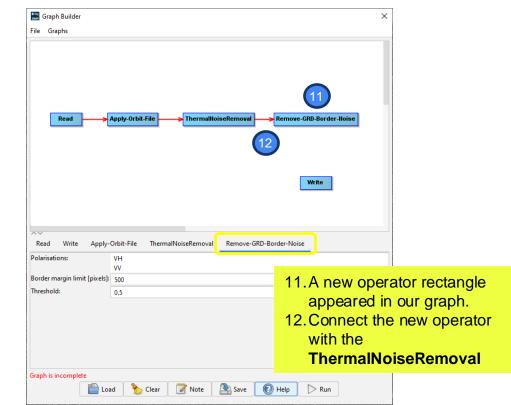
Data Pre-processing Remove the thermal noise


- Thermal noise in SAR imagery is the background energy that is generated by the receiver itself.
- It skews the radar reflectivity to towards higher values and hampers the precision of radar reflectivity estimates.
- Level-1 products provide a noise LUT for each measurement dataset, provided in linear power, which can be used to remove the noise from the product.

Data Pre-processing Remove the thermal noise

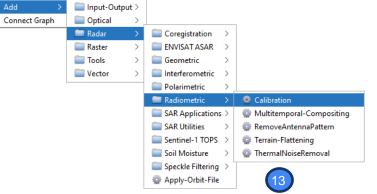
 Right-clicking the white space somewhere and go to to Add → Radar → Radiometric → ThermalNoiseRemoval

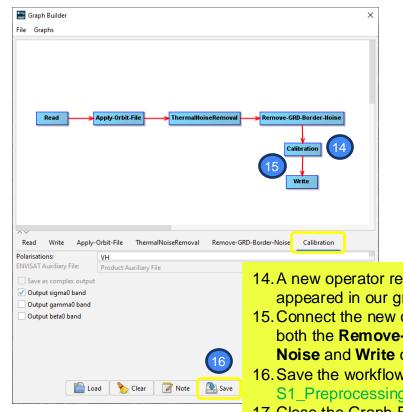

Data Pre-processing Remove GRD border noise


- The Sentinel-1 GRD (ground range detected) Level-1 product has noise artifacts at the image borders, which are quite consistent at both the left and right sides of the satellite's cross-track and at the start and end of the data take-along track.
- The Sentinel-1 border noise troubles the creation of a clean and consistent time series of backscatter.
- These processing steps are mainly the azimuth and /range compression and the sampling start time changes handling that is necessary to compensate for the change of earth curvature.

Data Pre-processing Remove GRD Border Noise

10. Right-clicking the white space somewhere and go to Add \rightarrow Radar \rightarrow Sentinel-1 TOPS \rightarrow Remove-GRD-Border-Noise

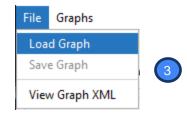

Data Pre-processing Calibration


- Typical SAR data processing, which produces level-1 images, does not include radiometric corrections and significant radiometric bias remains.
- The radiometric correction is necessary for the pixel values to truly represent the radar backscatter of the reflecting surface and therefore for comparison of SAR images acquired with different sensors or acquired from the same sensor but at different times, in different modes, or processed by different processors.

Data Pre-processing Calibration

13. Right-clicking the white space somewhere and go to Add \rightarrow Radar \rightarrow Radiometric \rightarrow Calibration

- 14. A new operator rectangle appeared in our graph.
- 15. Connect the new operator with both the Remove-GRD-Border-Noise and Write operators.
- 16 Save the workflow to
- S1_Preprocessing_1.xml
- 17. Close the Graph Builder window.


Tools	Window Help						
M	Metadata >						
A	ttach Pixel Geo-Coding						
D	etach Pixel Geo-Coding						
<mark>⊶</mark> € G	₽^C GraphBuilder						
Bee B	🗱 Batch Processing						
M	lanage External Tools						
PI	ugins						
0	ptions						
R	emote execution						

 In the Main Menu, open the Batch Processing tool (Tools → Batch Processing).

I/O Parameters							
File Name		Туре	Acquisition		Track	Orbit	
S1A_IW_GRDH_1SDV_20240	GRD		15Sep2024	135		55682	4
S1A_IW_GRDH_1SDV_20240	GRD		15Sep2024	135		55682	
							-
							

2. We will add both opened products by clicking **Add Opened** in the upper right (the second icon from the top) and then clicking **Refresh** (the second icon from the bottom).

 In the Batch Processing window, click File → Load Graph and navigate to our saved graph (S1_Preprocessing_1.xml) and open it.

I/O Parameters	Apply-Orb	it-File	ThermalN	oiseRemoval	Remove-G	RD-Border-Noise	Calibration	Write
File Nan	ne		Туре	Acquisit	ion	Track	Orbit	÷
TA_IW_GRDH_1SD	V_2024091	GRD		15Sep2024	135	55	682	규
S1A_IW_GRDH_1SD	V_2024091	GRD		15Sep2024	135	55	682	_
								*
								-
								*
								2 Products

4. We see that new tabs have appeared at the top of the **Batch Processing** window corresponding to our operators. We will change the parameter of each operator in the next steps.

Batch Processing : S1_Preprocessing_1.xml	Batch Processing : S1_Preprocessing_1.xml			
File Graphs		File Graphs		
I/O Parameters Apply-Orbit-File ThermalNoiseRemoval Remove-GRD-Border-Noise Calibration	Write	I/O Parameters Apply-Orbit-File ThermalNoiseRemoval Remove-GRD-Border-Noise Calibration	Write	
Orbit State Vectors: Sentinel Precise (Auto Download)	~	Polarisations: VH		
Polynomial Degree:	3	Remove Thermal Noise Output Noise		
Do not fail if new orbit file is not found	5	Re-Introduce Thermal Noise	6	
Run remote Load Graph Run Close	Help	Run remote Load Graph Run Close H	Help	

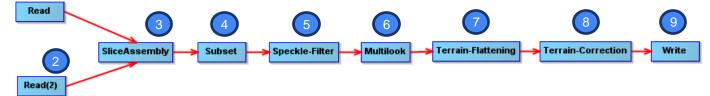
5. In the Apply-Orbit-File tab, accept the default settings.

6. In the ThermalNoiseRemoval tab select VV polarization and make sure that the "Remove Thermal Noise" option is selected.

Batch Processing : S1_Preprocessing_1.xml	×	Batch Processing : S1_Preprocessing_1.xml	×
File Graphs		File Graphs	
I/O Parameters Apply-Orbit-File ThermalNoiseRemoval Remove-GRD-Border-Noise Calibration	Write	I/O Parameters Apply-Orbit-File ThermalNoiseRemoval Remove-GRD-Border-Noise	Calibration Write
Polarisations: VV		Polarisations: VV	
Border margin limit [pixels]: 500		ENVISAT Auxiliary File: Product Auxiliary File	~
Threshold: 0.5		Save as complex output	
		Output sigma0 band	
	$\overline{7}$	Output gamma0 band	
		✓ Output beta0 band	
Run remote Load Graph Run Close	Help	Run remote Load Graph Run	Close Help

- 7. In the Remove-GRD-Border-Noise tab, make sure the VV polarization is selected and accept other default settings.
- 8. In the Calibration tab, make sure the VV polarization is selected and select the "Output beta0 band" option. The beta0 is required for another processing step (Terrain Flattening).

Batch Processing : S1_Preprocessing_1.xml									
File Graphs									
I/O Parameters	Apply-Orbit-File	ThermalNoiseRemoval	Remove-GRD	-Border-Noise	Calibration	Write			
Target Product									
Name:									
S1A_IW_GRDH_1	SDV_20240915T23160	1_20240915T231626_05568	2_06CCBA_08DA_	Orb_NR_Cal					
Save as: BEAM-D									
Directory:									
D:\03_SENTI	NEL ASIA\JPTM TRAIN	IING\S1_PostFlood_20240	915						
		Run remote	Load Graph	Run	Close	Help			


9. In the Write tab, define your output name and directory.

10. Click Run. It will take a few seconds or minutes to complete the process.

You should have 2 new products in the Product Explorer window. Close the Batch Processing window.

Data Pre-processing Open Graph Builder again

- Tools
 Window
 Help

 Metadata
 >

 Attach Pixel Geo-Coding...
 Detach Pixel Geo-Coding...

 Detach Pixel Geo-Coding...
 1

 Composition
 1

 Manage External Tools
 Plugins

 Options
 Remote execution
- 1. In the Main Menu, go to Tools \rightarrow GraphBuilder

- First, we need to delete the Write operator. Right click on it and select "Delete". Then we need to add a second Read operator. Right-click in the white space and go to Add → Input-Output → Read.
- 3. We will add the **SliceAssembly** operator by going to Add → Radar → Coregistration → Add → Radar → Sentinel-1 TOPS → SliceAssembly and connect both **Read** operators to it.
- Next, we will add the Subset operator (Add → Raster → Geometric → Subset) and connect the SliceAssembly operator to it.
- 5. Add the **Speckle-Filter** operator (Add → Radar → Speckle Filtering → Speckle-Filter) and connect the **Subset** operator to it.
- (Optional) Add the Multilook operator (Add → Radar → SAR Utilities → Multilook) and connect the Subset operator to it.
- 7. Add the **Terrain-Flattening** operator (Add → Radar → Radiometric → Terrain-Flattening) and connect the **Speckle-Filter** operator to it.
- 8. Add the **Terrain-Correction** operator (Add → Radar → Geometric → Terrain Correction → Terrain-Correction) and connect the **Terrain Flattening** operator to it.
- Lastly, we will add the Write operator (Add → Input-Output → Write) and connect the Terrain-Correction operator to it to save the final product

Data Pre-processing Read data

Read	Read(2)	SliceAssembly	Subset	Speckle-Filter	Terrain-Flattening	Terrain-Correction	Write
Source P	roduct						
Name:							
[3] S1A	_IW_GRDH_	1SDV_20240915T23	1601_20240	915T231626_05568	2_06CCBA_08DA_Orb_	NR_Cal	✓
Data	Format:	Any Format					~
Advanc	ed options						9
Read	Read(2)	SliceAssembly	Subset	Speckle-Filter	Terrain-Flattening	Terrain-Correction	Write
Source P	roduct						
Name:							
[4] S1A	IW_GRDH_	1SDV_20240915T23	1626_20240	915T231651_05568	2_06CCBA_F73A_Orb_N	NR_Cal	· · · · · · · · · · · · · · · · · · ·
L							
Data	Format:	Any Format					~
Advanc	ed options						

9. First, let's go to the first **Read** tab and make sure that the pre-processed product [3] from the first scene is selected as the Source product. Then go to the **Read(2)** tab and set the pre-processed product [4] from the second scene as the Source product.

Data Pre-processing Slice assembly

Read	Read(2)	SliceAssembly	Subset	Speckle-Filter	Terrain-Flattening	Terrain-Correction	Write	
Polarisati	ons: VV							
								10
10.	Go to	the SliceA	ssem	bly tab an	d make sure	the VV polari	zation is selected	

- To avoid distributing huge unwieldy products to end users, the Sentinel-1 data are segmented into 'slices' of defined length along a track. Product slices make the data more manageable for users and enable the ground segment to process slice data in parallel.
- Sliced products may be seamlessly combined, including the metadata, into an assembled product. Product assembly follows specific rules for including, merging and concatenating the various components of the slice products.

Data Pre-processing Subset image

Read	Read(2)	SliceAssembly	Subset	Speckle-Filter	Terrain-Flattening	Terrain-Correction	Write		
Source Bands: Beta0_VV									
🗸 Copy l	Metadata								
		Geographic C	oordinates						(1)
Reference	band:	Beta0_VV							
X:		1000			Y:		8000		
Width:		10000			he	ight:	17000		
Sub-samp	oling X:				1 🗘 Su	ıb-sampling Y:			1 🗘

Since our Area of Interest (AOI) is less and there is no need to process the whole assembled image, we start with sub-setting the scene to a more manageable size. This will reduce the processing time in further steps and is recommended when the analysis is focused only on a specific area and not on the complete scene.

11.Go to the Subset tab and at "	Pixel Coordinates" set:
X = 1000	Y = 8000
Width $= 1000$	Height = 17000

Data Pre-processing Speckle filter

Read	Read(2)	SliceAssembly	Subset	Speckle-Filter	Terrain-Flattening	Terrain-Correction	Write
	Beta	_vv					
Source Ban	der						
Source ban	us:						
							12
Filter:	Refin	ed Lee					~

- 12. Go to the **Speckle-Filter** tab and select Refined Lee filter method. You can try other available filters if you'd like.
- SAR images have inherent salt and pepper like texturing called speckles which degrade the quality of the image and make interpretation of features more difficult.
- Speckles are caused by random constructive and destructive interference of the de-phased but coherent return waves scattered by the elementary scatters within each resolution cell.
- Speckle noise reduction can be applied either by spatial filtering or multilook processing. The operator supports several speckle filters for handling speckle noise of different distributions (Gaussian, multiplicative or Gamma), including Boxcar (mean), Median, Frost, Lee, Refined Lee, Gamma-MAP, Lee Sigma, IDAN.

Data Pre-processing (Optional) Multi-look

Read Read(2) Slice	eAssembly Subset	Speckle-Filter	Multilook	Terrain-Flattening	Terrain-Correction	Write
Source Bands:	Beta0_VV					
						12
GR Square Pixel	Independent Looks					
Number of Range Looks:	3					
Number of Azimuth Looks:	3					
Mean GR Square Pixel:	30.0					
Output Intensity						

12. Go to the **Speckle-Filter** tab and change the Number of Range Looks to 3.

- Multi-look processing can also reduce the inherent speckled appearance, thus improving the image interpretability. It can be produced by space-domain averaging of a single look image or by frequency-domain method using the sub-spectral band width.
- Additionally, multi-look processing can be used to reduce the image pixel size.

Data Pre-processing Terrain flattening

- Terrain variations affect not only the position of a target on the Earth's surface, but also the brightness of the radar return. Without treatment, the radiometric biases caused by terrain variations are introduced into the coherency and covariance matrices.
- This operator removes the radiometric variability associated with topography using the Radiometric Terrain Correction algorithm.
- In the RTC algorithm, the radiometric effect is simulated using a digital elevation model (DEM) of the imaged area. It is therefore required that the DEM resolution must be higher than the image resolution. In case that the DEM resolution is lower than the image resolution, users have two options:
 1) Oversample the DEM to higher resolution, 2) Multilook the source image to lower resolution
- The input to this operator should be calibrated beta0. The output of this operator is terrain flattened gamma0.

Data Pre-processing Terrain flattening

Read	Read(2)	SliceAssembly	Subset	Speckle-Filter	Terrain-Flattening	Terrain-Correction	Write
Source Ba	inds:		Beta0_VV				
							13
Digital Ele	vation Mod	el:	SRTM 1Sec H	HGT (Auto Downlo	oad)		~
DEM Resa	mpling Met	hod:	BILINEAR_IN	TERPOLATION			~
Extern	nal DEM App	ly EGM	🗸 Output Te	errain Flattened Ga	amma0		
Outpu	ut Simulated	lmage	Output Te	errain Flattened Sig	gma0		
🗹 Mask	out areas wi	thout elevation					
Additiona	il Overlap Pe	rcentage[0,1]:	0.1				
Oversamp	oling Multipl	e:	1.0				

13. Go to the Terrain-Flattening tab and accept the default settings.

Data Pre-processing Terrain correction

Read	Read(2)	SliceAssembly	Subset	Speckle-Filter	Terrain	Flattening	Terrain-Co	orrection	Write		
			Source Bar	ıds:		Gamma0_\	N				
			Digital Elev	ation Model:		SRTM 1Sec	HGT (Auto D	ownload)		<u> </u>	
			DEM Resar	npling Method:		BILINEAR_	NTERPOLATI	ON		∽]	
			Image Resa	ampling Method:		BILINEAR_	NTERPOLATI	ON		~]	
			Source GR Pixel Spaci	Pixel Spacings (az ng (m):	x rg):	10.0(m) x 10 10.0	.0(m)				
			Pixel Spaci	ng (deg):		8.98315284	1195215E-5				
			Map Projec	tion:		ודט	VI Zone 47 / V	Vorld Geode	etic System 1984	15	
			✓ Mask c Output b	out areas without e ands for:	levation	Output	complex data	3		—	
				ed source band		DEM			& Longitude		
				ence angle from ell	lipsoid	Local inci	dence angle	Projecte	d local incidence angl	e	
			Layov	er Shadow Mask							
				radiometric norma	lization						
			Sav 🗌 Sav	e Sigma0 band		Use projec	ted local inci	dence angle	from DEM	~	

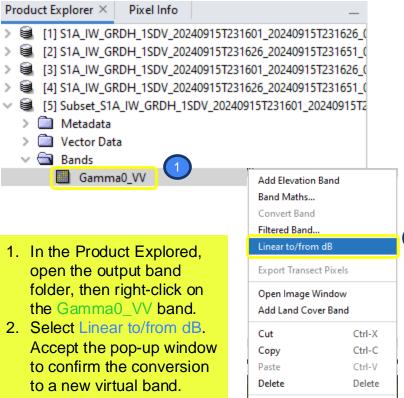
 Go to the Terrain-Correction tab. In the Digital Elevation Model, select SRTM 1Sec HGT (Auto Download).
 In the Map Projection, select projection UTM/WGS 84 (Automatic) and click OK.

🛃 M	ap Projection				×
	ordinate Reference Custom CRS	System (CRS)			(15)
	Geodetic datum:	World Geodetic System 1984			
	Projection:	UTM / WGS 84 (Automatic)			~
				Projection Para	imeters
С	Predefined CRS				Select
			ОК	Cancel	Help

- Due to topographical variations of a scene and the tilt of the satellite sensor, distances can be distorted in the SAR images.
- Image data not directly at the sensor's Nadir location will have some distortion.
- Terrain corrections are intended to compensate for these distortions so that the geometric representation of the image will be as close as possible to the real world.

Data Pre-processing Write output and Run the Graph Builder

Read	Read(2)	SliceAssembly	Subset	Speckle-Filter	Terrain-Flattening	Terrain-Correction	Write		
- Target P	roduct								
Name:									
Subset	S1A_IW_GR	DH_1SDV_2024091	5T231601_20	0240915T231651_0	55682_06CCBA_08DA_0	Drb_NR_Cal_Asm_Spk_1	TF_TC		
Save as:	BEAM-DIN	IAP ~							16
Dire	ctory:								
D:\	03_SENTINE	L ASIA\JPTM TRAIN	NING\S1_Po	stFlood_20240915					
			📄 Loa	d 🍾 Clear	📝 Note 🛛	Save 🕜 Help	D D Ru	, 17	


16. Go to the Write tab and define your output directory.17. Now that all settings are completed. Run the Graph Builder.

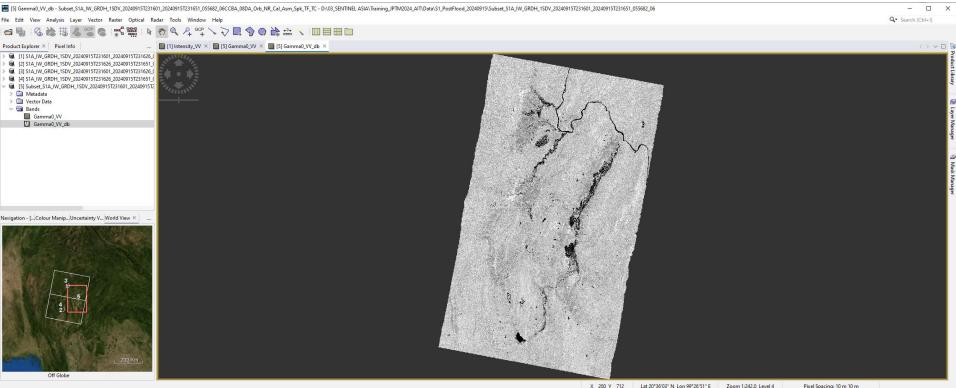
Data Pre-processing Visualize the output

🔚 [5] Gamma0_W - Subset_S1A_IW_GRDH_ISDV_20240915T231601_20240915T231651_055682_06CCBA_08DA_Orb_NR_Cal_Asm_Spk_TF_TC - D:\03_SENTINEL ASIA\T	raining_JPTM2024_AIT\Data\S1_PostFlood_20240915\Subset_S1A_IW_GRDH_1SDV_20240915T231601_20240915T231651_055682_06CCB	– 🗆 X
File Edit View Analysis Layer Vector Raster Optical Radar Tools Window Help		Q- Search (Ctrl+I)
⊴ 🖣 % 🏷 ቼ 🧶 📽 🧱 ▶ 👩 🤍 Ք 약 🥆 ⊋ 🗖 🌍 🖓 🏔 🖆 🔪 III 🗏 🖿 🗖		
Product Explorer × Pixel Info [1] Intensity_VV × [1] [5] Gamma0_VV ×		<> ~ 🗆 😫
 I [1] 51A_UV_(ER0H_150V_20240915723162,62040915723165,67 I [2] 51A_UV_(GRDH_150V_20240915723162,62040915723165,17 I [3] 51A_UV_(GRDH_150V_20240915723162,62040915723165,17 I [3] 51A_UV_(GRDH_150V_202409157231661_20240915723165,17 I [3] 51A_UV_(CRDH_150V_202409157231661_20240915723165,17 I [3] 51A_UV_(CRDH_150V_202409157231661_20240915723165,17 I [3] 51A_UV_(CRDH_150V_202409157231661_20240915723165,17 III [3] 51A_UV_(CRDH_150V_202409157231661_20240915723165,17 III [3] [3] [3] [3] [3] [3] [3] [3] [3] [3]		Product Library 11 Layer Manager 11 Maik Manager
Navigation - EColour ManipUncetainty VWorld Yiew ×		

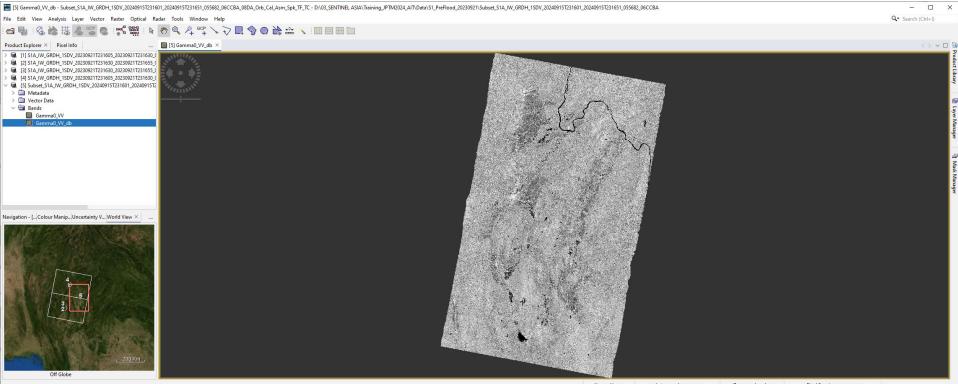
Data Pre-processing Convert to decibel

Properties

2


Add Land Cover Band Group Nodes by Type **Open RGB Image Window** Open HSV Image Window Product Explorer × Pixel Info Close Product Close All Products [1] S1A_IW_GRDH_1SDV_20240915T231601_2024 Close Other Product [2] S1A_IW_GRDH_1SDV_20240915T231626_2024 [3] S1A IW GRDH 1SDV 20240915T231601 2024 Save Product Save Product As... [4] S1A IW GRDH 1SDV 20240915T231626 2024 [5] Subset_S1A_IW_GRDH_1SDV_20240915T231601_20240915T2 Metadata Vector Data Bands \sim Propagate Uncertainty... Gamma0 VV Add Elevation Band Gamma0_VV_db Band Maths... Convert Band Filtered Band... 3. The converted Linear to/from dB Gamma0 VV db band will be Export Transect Pixels saved on the band folder. Open Image Window 4. Right-click on this new band, Add Land Cover Band then select Convert Band to Cut Ctrl-X convert the virtual band to Copy Ctrl-C image. Paste Ctrl-V 5. Last, right-click on the [5] Delete Delete folder, and select Save Product Properties

Band Maths... Add Elevation Band


- 1. In the Product Explored,
- 2. Select Linear to/from dB.

Data Pre-processing Visualize the new output

Data Pre-processing Repeat the same processing workflow for Pre-flood images

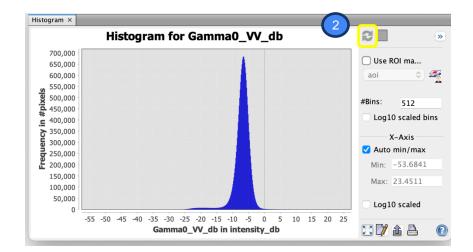
Data Pre-processing Defining a threshold value (1)

Next, we will separate water and non-water pixels. We have to define a threshold value in which we assume that the pixels whose values are below the threshold belong to the water area, and those that are above that threshold belong to the nonwater area.

We can manually inspect the threshold value by visually checking the image.

- In the Main Menu, go to View → Tool Windows → Pixel Info.
- 2. Hover over the image and check the value in the Pixel Info window

Product Explorer	Pixel Info ×	
Position		
Image-X	1934 pixel	
Image-Y	1718 pixel	
Longitude	99°58'59" E degree	
Latitude	20°11'49" N degree	
Map-X	602714 . 758841605 m	
Map-Y	2233584.0965341018 m	
🛨 Time	2	
🖃 Bands		
Gamma0_VV_db	–15.24466 intensity_db	
Tie-Point Grids		
🕂 Flags		
Snap to selecte	ed pin	

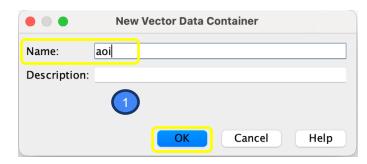


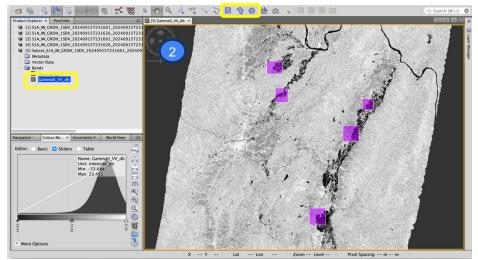
Data Pre-processing Defining a threshold value (2)

We can also calculate a histogram to define the value. Ideally, a threshold can be defined when the histogram is a bimodal distribution containing two peaks separated by a valley.

- In the Main Menu, go to Analysis → Histogram.
- 2. Click Refresh 😂 to calculate the histogram

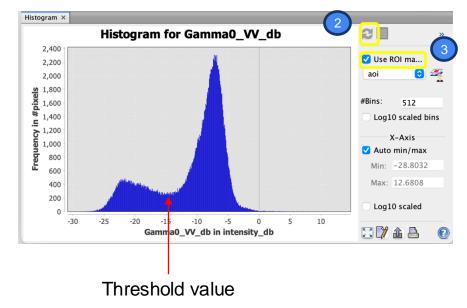
See that the distribution does not really look like a bimodal one. This is because the full image contains much larger non-water than water areas.



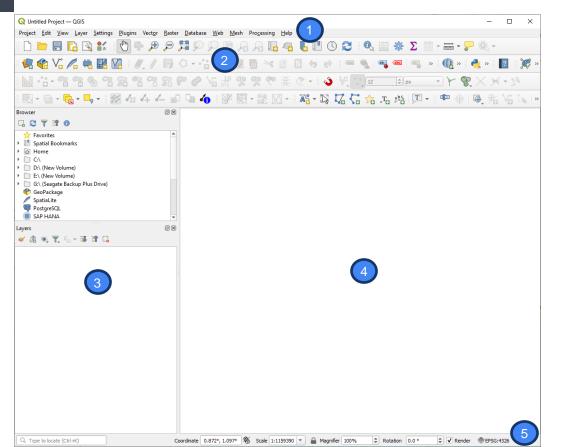

Data Pre-processing Defining a threshold value (3)

Let's create a group of polygons to get the distribution that balances water and non-water areas.

- In the Main Menu, go to Vector → New vector Data Container. Give a name aoi to the new container and click OK.



Data Pre-processing Defining a threshold value (4)


Now, we calculate the histogram based on the aoi.

- In the Main Menu, go to Analysis → Histogram.
- 2. Checklist the Use ROI mask.
- 3. Click Refresh 😂 to calculate the histogram

We now have the bimodal distribution. Estimate the value for the valley that we can choose as our threshold to create the binary images for the water and non-water areas.

Data Processing in QGIS Open QGIS Software

- Open QGIS Desktop in your laptop/PC: QGIS Desktop
- You will have a new, blank map.
- 1. Menu Bar
- 2. Toolbars
- 3. Layers List / Browser Panel
- 4. Map View
- 5. Status Bar

Data Processing in QGIS Open the pre-processed Sentinel-1 data

- In the Menu Bar, click on Layer → Add Layer
 → Add Raster Layer.
- In Data Source, click on the Browse button and navigate to the file \Subset_S1A_IW_GRDH_1SDV_20240915T 231601_20240915T231651_055682_06CCB A_08DA_Orb_NR_Cal_Asm_Spk_ML_TF_T C.data\Gamma0_VV_db.img in the data folder.
- 3. With this file selected, click Add, then Close. The data you specified will now load.

Data Processing in QGIS Rename the raster image

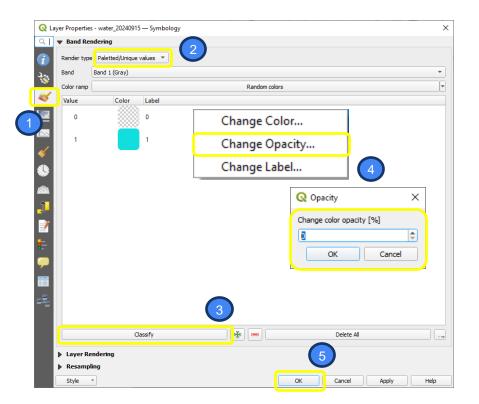
The images name for post-flood and pre-flood images are identical. To avoid confusion, we will rename the image by including the date.

- 1. Right-click the raster image, then go to Layer Properties and switch to the Source
- 2. Rename to Gamma0_VV_dB_20240915.
- 3. Click OK.

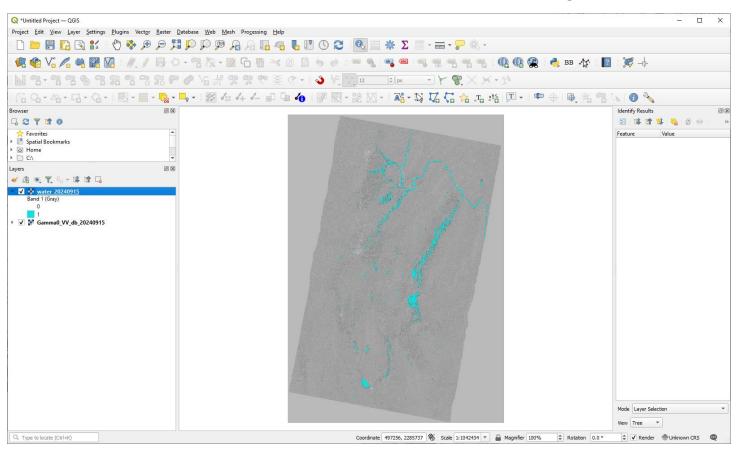
Q Layer Properties - Gamma0_W_db_2024 — Source
Q Layer name Gamma0_VV_db_20240915
 ✓ Assigned Coordinate Reference System (CRS)
UTM Zone 47 / World Geodetic System 1984 🔹 🌏
In this option does not modify the original data source or perform any reprojection of the raster layer. Rather, it can be override the layer's CRS within this project if it could not be detected or has been incorrectly detected. Locessing "Warp (reproject)" tool should be used to reproject a raster source and permanently change the data source's CRS.
▼ Layer Source
GRDH_1SDV_20240915T231601_20240915T231651_055682_06CCBA_08DA_Orb_NR_Cal_Asm_Spk_ML_TF_TC.data\Gamma0_VV_db.img @
Image: source Image: source
J.
E .
•
3
Style * OK Cancel Apply Help

Creating a binary map bases on a threshold value

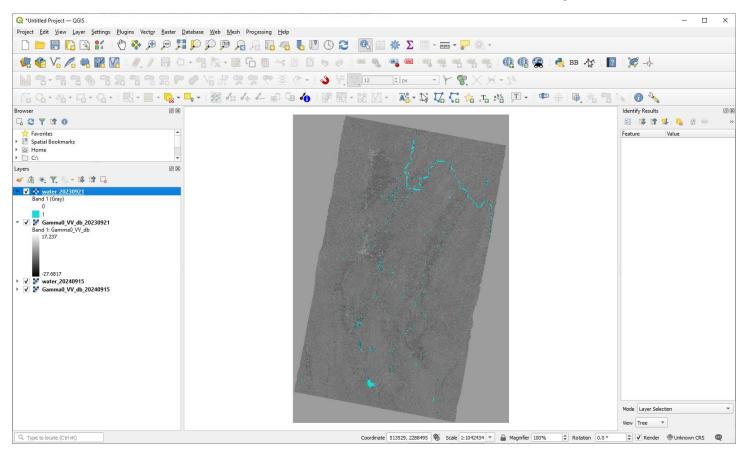
We will use this threshold value: -15 dB.


- 1. Click on Raster \rightarrow Raster Calculator.
- 2. In the Raster Calculation Expression write: "Gamma0_VV_db_20240915@1" < - 15</p>
- 3. Save the result to water_20240915.tif
- 4. Click OK.

Raster Calcul	ator								\times
Raster Bands			Result Layer						
	db_20240915@1 15@1		Create on- Output layer Output format Spatial Exter	tt d Layer Extent 79.75884 ↓ 749.09653 ↓ 414 ↓ EPSG:32647	Dutput\water	20240915.ttf 677099.7588 2285139.096 Rows 6313		3	
+	*	(min	IF	cos	acos			
-	1)	max	AND	sin	asin			
<	>	-	abs	OR	tan	atan			
<=	>=	!=	^	sqrt	log 10	In			
Raster Calculat	or Expression								
"Gamma0_VV_d	db_20240915@1	l" < - 15	2						
				4		ок	Cancel	Help	


Changing visualization color scheme

- Go to Layer Properties and switch to the Symbology
- 2. Change Render type to Paletted/Unique values.
- 3. Click Classify. You will get two values, 0 and 1.
- 4. Make transparent color for value 1 by changing its opacity. Right-click color of value 1, then select Change Opacity. Write 0, then OK.
- 5. Click OK.



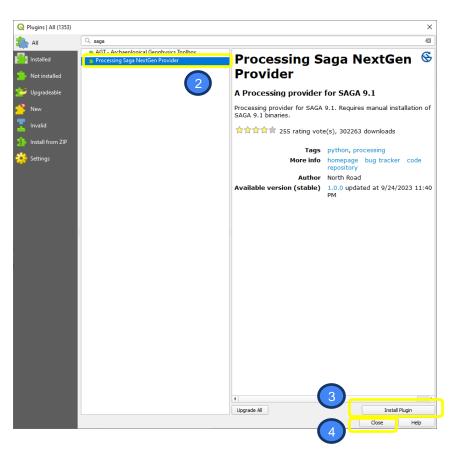
Repeat the same process for the pre-flood image

Data Processing in QGIS Estimating the flood pixels

We will estimate the flood pixels by subtracting water pixels from post-flood with the pre-flood.

- 1. Click on Raster \rightarrow Raster Calculator.
- 2. In the Raster Calculation Expression write: "water_20240915@1" - "water_20230921@1"
- 3. Save the result to flood_20240915.tif
- 4. Click OK.

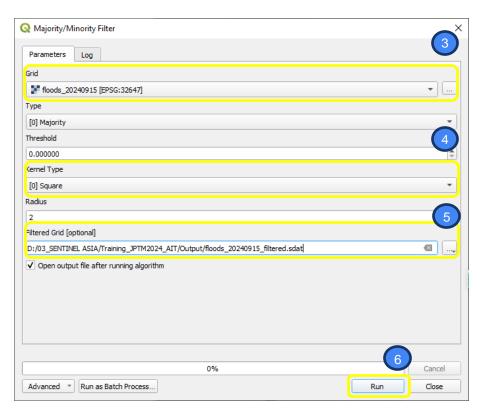
amma0_VV_db_202240915@1 amma0_VV_db_2023021@1 atter_20230921@1 atter_20230915@1 Create on-the-fly raster instead of writing layer to disk Output layer PTM2024_AIT/Output\floods_20240915 《 Output format GeoTIFF ▼ Spatial Extent Use Selected Layer Extent X min 544802.18685 \$ X max 677222.18685 \$ Y min 2095763.21398 \$ Y max 2285153.21398 \$ Resolution Columns 4414 \$ Rows 6313 \$ Output CRS EPSG:32647 - WGS 84 / UTM zone 47 * ▲ Add result to project + * (min IF cos acos	5	Result Layer
)perators + * (min IF cos acos	/V_db_20240915@1 /V_db_20230921@1 0921@1	Create on-the-fly raster instead of writing layer to disk 3 Output layer PTM2024_AIT/Output/floods_20240915 ••••••••••••••••••••••••••••••••••••
+ - (min IF Cos acos		
- /) max AND sin asin		
< > = abs OR tan atan		
<= >= != ^ sqrt log10 ln	>= !=	^ sqrt log10 In



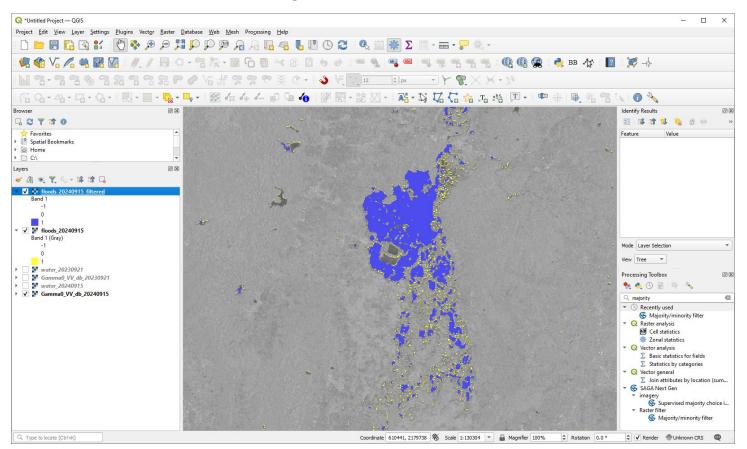
Post-processing in QGIS Installing a plugin: SAGA Next Gen

Plugins allow you to extend the functionality QGIS offers.

- In the Menu Bar, click on Plugins → Manage and Install Plugins.
- 2. In the dialog that opens, find the Processing SAGA NextGen Provider plugin.
- 3. Click Install Plugin.
- 4. Click Close.


Your new plugin is installed. You will find the installed SAGA Next Gen in the processing toolbox.

Remove isolated pixels

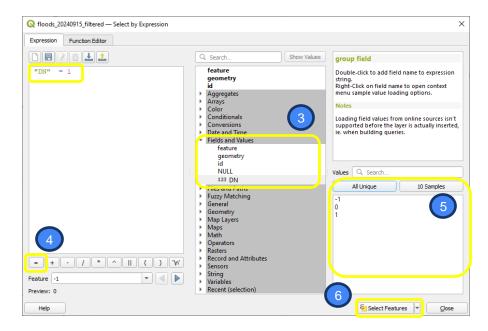

- 1. In the Menu Bar, click on Processing \rightarrow Toolbox.
- 2. Search for Majority/minority filter processing tool, then open the tool.
- 3. In the Grid input, select floods_20240915.
- 4. Change Kernel Type to Square and keep other parameters as default. You may want to test with different threshold and radius.
- 5. Save the result to floods_20240915_filtered.sdat
- 6. Click Run

Visualization: Comparing flood pixels before and after filtered

Convert flood pixels to polygon

- 1. In the Menu Bar, click on Raster \rightarrow Conversion \rightarrow Polygonize (Raster to Vector).
- 2. In the Input layer, select floods_20240915_filtered.
- 3. Save the result to floods_20240915_filtered.shp
- 4. Click Run

Q Polygonize (Raster to Vector)				
Parameters Log				
Input layer				
Floods_20240915_flitered [EPSG:32647]				
Danu Tuuriber				
Band 1 🔹				
Name of the field to create				
DN				
Use 8-connectedness				
Advanced Parameters				
Additional command-line parameters [optional]				
Vectorized				
D:/03_SENTINEL ASIA/Training_JPTM2024_AIT/Output/floods_20240915_filtered.shp				
GDAL/OGR console call				
gdal_polygonize.bat "D:/03_SENTINEL ASIA/Training_JPTM2024_AIT/Output/floods_20240915_filtered.sdat" -b 1 -f "ESRI Shapefile" "D:/03_SENTINEL ASIA/Training_JPTM2024_AIT/Output/floods_20240915_filtered.shp" floods_20240915_filtered_DN				
0% Cancel				
Advanced * Run as Batch Process Run Close Help				



Post-processing in QGIS Filter flood polygons from attribute

- 1. Right-click on the floods_20240915_filtered layer, then click Open Attribute Table
- 2. In the Table Toolbars, click Select features using an expression button.

We will select polygons with value of 1 by writing in the Expression box: "DN" = 1

- 3. Expand the Field and Values and double-click DN. The text will be added to the Expression box.
- 4. Click = and the text in the Expression box will be updated.
- 5. Click All Unique, then double-click 1.
- 6. Click Select Features

Save selected flood polygons to a new shapefile

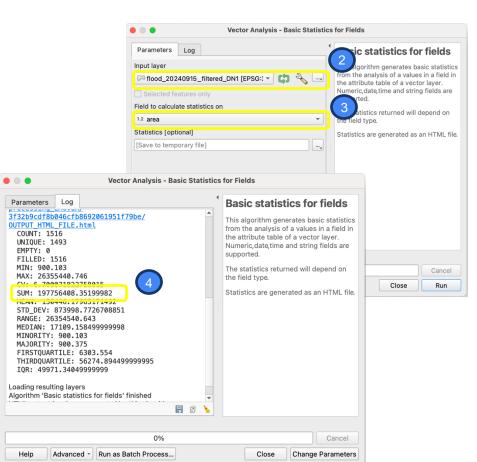
- Right-click on the floods_20240915_filtered layer in the Layers list, click Export → Save Selected Features As...
- 2. Make sure to checklist "Save only selected features".
- 3. Save the result to floods_20240915_filtered_DN1.shp.
- 4. Click OK.

Q Save Vector Layer as X						
Format	ESRI Shapefile					
File name	ile name 03_SENTINEL ASIA\Training_JPTM2024_AIT\Output\floods_20240915_filtered_DN1.shp					
Layer name	ayer name					
CRS	CRS EPSG:32647 - WGS 84 / UTM zone 47N 🔹					
▶ Select ✓ Persist is	Encoding UTF-8 Save only selected features Select fields to export and their export options Select fields to export and their export options Geometry					
	type Automatic multi-type le z-dimension					
	North 2285153.2140 4802.1869 East 677102.1869 South 2095763.2140 Calculate from Layer * Layout Map * Bookmark * Current Layer Extent Map Canvas Extent					
▼ Layer	5					

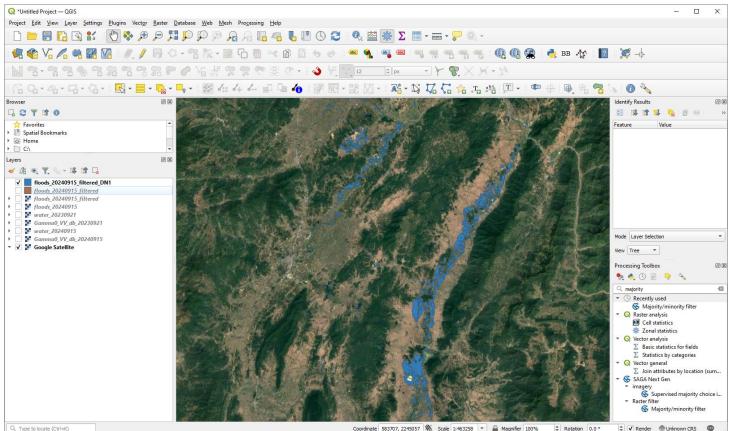
Calculate the area of each polygon in the table

Calculate area of each polygon in the attribute table of floods_20240915_filtered_DN1.

- 1. Right-click on the layer, then click Open Attribute Table
- 2. In the Table Toolbars, click Open Field Calculator 🔛 button.
- 3. In Output field name, write area.
- 4. In Output field type, select Decimal number (real).
- 5. Expand the Geometry and double-click \$area. The text will be added to the Expression box.


6. Click OK.

Q	lake_20170927 — Features Total: 48	0, Filtered: 480, Selected: 0	2_	
/	💈 📑 😂 📆 🖷 🖂 📦	🖸 i 🗞 🚍 💟 🔩 🍸 🕱 🐥 🔎 i		i 🔍 📾
123	DN = 8 123 DN		▼ Update All L	Jpdate Selected
	DN			<u> </u>
1	1			
2	1	Q lake_20170927 — Field Calculator		×
3	1	Only update 0 selected features		
4	1	✓ Create a new field	Update existi	ng field
5	1	Create virtual field	3	
6	1	Output field name area		Ţ
7	1	Output field type 1.2 Decimal number (real) Output field length 10 Precision 3		
8	1	Expression Function Editor		
9	1		Q. Se Show Help	rion Sarea
- 10	1	\$area	feature	Same area of the current feature. The
	1		geometry id	area calculated by this function respects both the current project's ellipsoid setting and area unit settings. For example, if an
11	Show All Features		Aggregates Arrays	ellipsoid has been set for the project then the calculated area will be ellipsoidal, and if
		-	Color Conditionals	no ellipsoid is set then the calculated area will be planimetric.
			Conversions	Syntax
			 Date and Time Fields and Values 	Sarea
			 Files and Paths Fuzzy Matching 	Examples
		=+-/*^ () %	 General Geometry affine_transf angle_at_ver apply_dash Sarea 	•‡area → 42
		Funture 1 🔹 🔍 🕨	area	
		Preview: 99.81945861433633	azimutn	
				OK Cancel Help



Calculate total flooded area

- In the Menu Bar, click on Vector → Analysis Tools → Basic Statistics for Fields.
- 2. In the Input layer, select floods_20240915_filtered_DN1.
- 3. Select the field area to calculate statistics on.
- 4. In the output, the total flooded area is the value for **SUM**. The unit is square meters, so to get the area in square kilometers, you have to divide by 1,000,000.

Visualization: Final flood map

THANK YOU

Geoinformatics Center, Asian Institute of Technology

